@

Apprentissage
telecom

saint-etienne AU tO m a tl q LI e

école d'ingénieurs
nouvelles technologies

=) LABORATOIRE

gt Recurrent Neural Networks

Thibaud Leteno (thibaud.leteno@univ-st-etienne.fr)

Based on the course of Barbara Martin et Ava Amini
Mars 2025

Introduction to RNN

- Idea behind RNN

- The core of RNN

- The Vanish Gradient Problem
- Long-short term memory

- Bi-directional RNN

Introduction to RNN

Classification

Computer

Vision

and Regression

Convolutional
Neural
Networks

Artificial Neural

Networks

Recurrent
Neural
Networks

Notion of sequence

Next position of the ball ?

-

Notion of sequence

Next position of the ball 7

|
<=-‘-=>
ll

No prior information. Could be any position.

Notion of sequence

Next position of the ball ?

CeeeL

Notion of sequence

Next position of the ball 7

"-=>

With prior information, we can guess what position
IS most likely to be next. Our prediction is guided.

Notion of sequence

A sequence can be :

- Audio

- Text (sequence of characters or words)
- Medical Signal (ECG)

- Financial markets

- Biological sequences encoded in DNA
- Patterns in the climate

What questions when dealing

with sequences ?

So far with FFN, One-to-one configuration (classification, regression)

Some notations :

X, the input.
y, the associated true label.

@ y, the predicted label.
X

What questions when dealing

with sequences ?

Many-to-one

O
LELL "¢

@

My experience
so far has been
fantastic!

POSITIVE

Example : Sentiment analysis

What questions when dealing

with sequences ?

One-to-many

0000

x T -
across a dry grass field.

(

Example : Image captioning

What questions when dealing

with sequences ?

Many-to-many

Le canapé est vert
ORONOL® O E
O QO 0O« (

Example : Translations, Chatbot

What solutions ?

What Neural Networks can we build to tackle
this type of problems ?

he perceptron, reminde

4
1 w1
w2
9 > Yy
wa
L3

Perceptron Model (Minsky-Papert in 1969)

he perceptron, reminder

[. Perceptrnn]

(o]

H\\

x1

79/ A,
- ol ‘I‘f’ | ::’*‘*’Q} folo -
x3

"‘é\ ~,, “ﬁt ‘:? ‘:;“'r h"/ \"A'

A N S
S

No notions of sequence or temporal processing...

x4

Handling individual time steps

Let consider a sequence X = {Xi1, X2, ..., Xn}

OB OO

1 1 1
i i i

X1 X2

Handling individual time steps

Let consider a sequence X = {Xi1, X2, ..., Xn}

OB OO

1 1 T Wehave

O O - O 9t] f(Xt)
with f learned and defined by the

ﬁ ﬁ ﬁ weights of the neural network.

X1 X2 Xn

Recurrent Neural Networks

Xt have dependencies not taken into considerations.

@ ? QHD previous inputs .
’C

n

Recurrent Neural Networks

Xt have dependencies not taken into considerations.

vncould depends of
previous inputs

i How can we define a
relation that links network

I I ﬁ computation of the
different steps ?

X1 X2 Xn

Recurrent Neural Networks

We want to pass the information from the previous computations to
the next step.

00 ©

n

Recurrent Neural Networks

We want to pass the information from the previous computations to
the next step.

states or memory term :

o o Variable h:

P

X1 X2 Xn

Recurrent Neural Networks

We want to pass the information from the previous computations to
the next step.

— — s yr = f(Xt, hea)

and depends on the input and
the past information.

© O O .
PEPER

X1 X2 Xn

Intermediate sum up : the recurrence

relation

Recurrence relation captures how we update internal
state h of t.

he = fuw(Xe, Nea) fl="f,

Same function f, and weights w at every steps.

(

RNN seen as a loop.

Intermediate sum up : the recurrence

relation

How do we compute ht ?
h: = tanh(wnn" * her + Wyn" * Xt)

Warning : several weights matrix are used !

tanh(z) 5

—2 -1 1

RNN seen as a loop.

Intermediate sum up : the recurrence

Intuition (pseudo-code)

rnn = RNN()
hidden states = [0, 0, 0, 0]
sentence = [“]”, “love”, “recurrent”, “neural”]

ht \
for word in sentence:

prediction, hidden states = rnn(word, hidden_states)

next word = prediction
(# next word = “networks”
Xt

RNN seen as a loop.

Criteria to get a robust and reliable

network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths
- Learn long-term dependencies

- Maintain information in order

- Share parameters across the sequence

Do we fulfill everything 7

Length of sequences and Language

Neural Networks understand numbers not words.
We need the sequences to be of fixed size.

How to represents the sentence numerically ?

Length of sequences and Language

Neural Networks understand numbers not words.
We need the sequences to be of fixed size.

How to represents the sentence numerically ?

Word Embeddings

Words embeddings

Embedding = mapping into a vector of numbers of fixed size.

college campus
teacher

degree

learning

student

university
school

diploma

1. Vocabulary

Words embeddings

Embedding = mapping into a vector of numbers of fixed size.

college campus

teacher

degree

learning

student

university
school

diploma

1. Vocabulary

college -0
campus -1
teacher -2
learning - 3

diploma -» n

2. Indexing
(words to index)

Words embeddings

Embedding = mapping into a vector of numbers of fixed size.

college campus

teacher

degree

learning

student

university
school

diploma

1. Vocabulary

college -0
campus -1
teacher -2
learning - 3

diploma -» n

2. Indexing
(words to index)

teach
[]

classroom
[]

learning
)

instruction
o

teaching

teacher
o

student
o

academic

aculty

school raduate
° .cnllege 3

university
o]

campus
[]

curriculum
[

educational
® education
[

3. Embedding

Words embeddings

One-hot encoding

college

campus
teacher
learning

diploma =1[0,0, 0,0, ..., 1]

Vectors is the size of
the vocabulary.

No notion of meaning.

Learned embedding

Word Embeddings in 2D Space

Captures some meaning from the data.

Words embeddings

Padding

Sentence_

1 , ‘love’, ‘neural’, ‘networks’]
Sentence 2

, ‘use’, ‘recurrent’, ‘neural’, ‘networks’, ‘everyday’]

Embedding 1

= [.5, 0.35, 0.4]
Embedding 2 =[0.2, 0.9, 5

, 0.35, 0.4, 0.8]

Embedding 1 and Embedding 2 have different size...

With padding:
Embedding 1 =[0.2, 0.5, 0.35, 0.4, 0.0, 0.0]
Embedding 2 =[0.2, 0.9, 0.65, 0.35, 0.4, 0.8]

Padding can be done to fixed size (with truncation) or max size.

Criteria to get a robust and reliable

network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths v/
- Learn long-term dependencies
- Maintain information in order «/

- Share parameters across the sequence \/

We have seen how to process a sequence,
but how do we train the network ?

How do we compute the loss when
we have N predictions ?

Loss computation with RNN

Compute a loss at every steps.

S
@ 9t=.yt?
b

Total loss for a given sequence :

L=L+L+..+I

S
?
'

Xn

Backpropagation (Feed Forward Networks)

Input nodes Hidden nodes Output nodes

X1 ——>

X2 ——»

Input
- Y Qutput

X3 —»

X4 —»

Input layer Signal propagation direction> Qutput layer

—
P
4 IO00+
\L :
_,

|
|
.— _%.l.rw

OO0}

z" A—, ﬁ.% — =
%) ﬁn_;lﬂ..@o._.‘m_

._. F —pz

34000}

H

Backpropagation through time in RNN
L,
;
T L

=
=
ad
)
=
_I
f=
o
>
O
-
e
_I
-
O
o
©
)
©
Q
O
-
o
R,
U
©
an)

Backpropagation Through Time (RNN)

RNN have individuals losses across steps :

- When back-propagating we have to propagate the loss through
each individuals steps

= Back-propagation Through Time

- We take the predictions and back-propagate back through the
network to define and update the loss with regards to each
parameters in the network and adjust it.

Backpropagation Through Time (RNN)

RNN have individuals losses across steps :

— When backpropagating we have to propagate the loss through
each individuals steps = Backpropagation Through Time

— We take the predictions and backpropagate back through the
network to define and update the loss with regards to each
parameters in the network and adjust it.

Example at step 2 :

C]Lg C”_r,g C)g.fg E-iyg Iij
e e — * wy = Wy — ¥ * —

dwy O dyy Owy = dwy

Compute the gradient Update parameters

(chain rule)

Problem : RNN’s backpropagation is tricky !

Many repeated computations and multiplication in order to compute the
gradients wrt. to the first step — issues with the gradient.

Problem : RNN’s backpropagation is tricky !

Many repeated computations and multiplication in order to compute the
gradients wrt. to the first step — issues with the gradient.

If the values of the gradient get :

- Too large - Exploding gradient problem
— Impossible to train the network

- Too small - Vanishing gradient problem
— Can’t update the parameters and train the model

properly

Problem : RNN’s backpropagation is tricky !

- Exploding gradient problem

Simple solution : weights clipping (scale the weights at reasonable values)

- Vanishing gradient problem
Three tools to mitigate the problems :
- Activation function

- Weights initialization
- Network architecture

Why is the vanishing gradient a problem ?

Multiplying many small number with small number -» Gradient get smaller
and smaller.

- In case of short sequences, not a problem.

— In case of long sequences, we need information from further back in the
seguence to do the prediction. The problem then appears because of the
multiplicity of operations to do.

Vanishing gradient problem and solutions

1) Activation function : switch from Tanh to ReLU.
— prevents the derivative to shrink
the gradients when x > 0.

2) Weights initialization :

At initialization :

- weights are set to the identity matrix.
- bias are set to 0.

— prevents the weights from shrinking to 0

Tanh

Vanishing gradient problem and solutions

3) Adjust the architecture (most efficient)

— Objective : controlling the flow of information in the network
to filter out what is not important.

— Add gated cells to selectively add or remove information within
each recurrent unit.

— Techniques : LSTM, GRU, etc.

We will focus on LSTM.

Long-Short Term Memory

Key concepts :

1) LSTM maintains a cell state c: (like RNN) but it is independent from
what is outputted.

2) Cell state is updated according to the gates that control the
iInformation flow :

- Forget gate get rids of irrelevant information.

- Store relevant information from the current input.

— Selectively update cell state

- Output gate returns a filtered version of the cell state.

RNN reminde

LSTM, global view

LSTM maintain a cell state through steps

STM, forget gate

J fe=0Wg-lhi—1,2] + by)
Uses a sigmoid activation function

If close to O, information is forgotten;
If close to 1, the information is retained.

Retrieve internal state and get rid of irrelevant information.

LSTM, store relevant information from input

it =0 (Wi-lhi—1,2¢] + b;)
ét — tanh(Wc-[ht_l,a:t] + bc)

sigmoid function determine if new
information is accepted (close to 1) or not
(close to 0)

tanh function creates a candidate value that
can be added to the cell state

Input gate: retrieve internal state and extract relevant information.

LSTM, update cell state

fi %r‘%% Cy = fo x Ci1 +ip % Cy

Old information is updated based on the
importance of the new input

Update with remove and added information.

LSTM, output filtered version of the cell state

Ot — 0 (WO [ht—laxt] =+ bo)
ht = Ot X tanh (Ct)

sigmoid function decides what portion of
the cell state should be passed.

Compute the hidden state based on the cell
state with tanh function.

Transmit less information to allow long-term sequences.

LSTM, global view

LSTM variations

Jt=o0 (Wf'[ot—la he—1, ‘/Et] + bf)
| it = 0 (Wi [Cez1,he—1,2¢] + bi)
— T | Or =0 (WO'[Ota h’t—la CE’t] + bo)

Gers & Schmidhuber (2000), adding “peephole” connections (the gate layers (forget and
input) look at the cell state)

ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

LSTM variations

Ot:ft*ct—1+(1_ft)*ét

Variation : coupled forget and input gates

LSTM variations

o) (Wz ' :ht—lamt:)
Tt — U(Wr ' :ht—lamt:)
Flt = tanh (W . [’f’t X ht—l; CL’t])

N
~
|

ht:(l—zt)*ht_l—l—zt*}lt

Gated Recurrent Unit (GRU, Cho, et al. (2014)) :
— combine the forget and input gates into a single “update gate”
- merge the cell state and hidden state

http://arxiv.org/pdf/1406.1078v3.pdf

Criteria to get a robust and reliable

network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths v/
- Learn long-term dependencies \/ (at least longer)
- Maintain information in order «/

- Share parameters across the sequence \/

Bi-directional RNN

Limits of RNN

@ — RNN processes sequences in a
single direction.
ﬁ (left-to-right or right-to-left)

h1
)

h> ht-1

e — Only information from previous

steps can be used.

© 0
o

X1 X2 Xn

Limits of RNN

Example :

- Apple is my favorite

Limits of RNN

Example :

— Apple is my favorite fruit/company/phone.

Limits of RNN

Example :
- Apple Is my favorite fruit/company/phone.

— Apple is my favourite , and | work there.

Limits of RNN

Example :
— Apple is my favorite fruit/company/phone.

- Apple is my favourite company, and | work there.

Limits of RNN

Example :
— Apple is my favorite fruit/company/phone.
- Apple is my favourite company, and | work there.

- Apple is my favorite , and | am going to buy one.

Limits of RNN

Example :
— Apple is my favorite fruit/company/phone.
- Apple is my favourite company, and | work there.

- Apple is my favorite phone, and | am going to buy
one.

Limits of RNN

Example :
— Apple is my favorite fruit/company/phone.
- Apple is my favourite company, and | work there.

- Apple is my favorite phone, and | am going to buy
one.

We need later information to make a good prediction.

Bi-directional RNN or Bi-RNN

Objective :

— Capture the information in the input data by
processing it in both directions.

— BI-RNN = RNN that processes data in forward and
backward directions.

|dea :

— Combine the outputs of two RNNs.

Bi-directional RNN or Bi-RNN

ldea :

— Combine the outputs of two RNNs :
- Forward RNN processes the data from left to right.

- Backward RNN processes the data from right to left.

Bi-directional RNN or Bi-RNN

— Combine the outputs of two RNNs :

How to combine outputs of the RNNs 7

— Concatenation (default): outputs of the forward and backward RNNs are
concatenated together. Output tensor is twice the size of the input vector.

- Sum: outputs of the forward and backward RNNs are added together
element-wise. Output tensor of the same size as the input.

— Average: outputs of the forward and backward RNNs are averaged
element-wise. Output tensor of the same size as the input.

- Maximum: maximum value of the forward and backward outputs is
taken at each step. Output tensor of the same size as the input.

How to back-propagate during

— Back-propagation through time (BPTT) (as for RNN).

— 2 separate BPTT (one for each network).

— use the same output to compute the loss.

Backpropagation through time in RNN g l@
L
Lo L Ly
+ " (she—Ale—]Ale

b i
‘_

i

._,E,T
|
|
000
Oﬁ
9 >
@d’

w, w, =
a‘__a ‘-_a
ool
[™
Xo Xz

T

A <

k#

How to back-propagate during

— Back-propagation through time (BPTT) (as for RNN).
— 2 separate BPTT (one for each network).

- In the end, training a bi-RNN boils down to training :
1) a RNN to predict the next word knowing the
previous words.
2) a second RNN to predict the previous word
knowing the next ones.

— BiI-RNN consider information from previous and next
steps when making predictions.

Bi-RNN : Advantages

— Better performance for sequential data processing since it

consider previous and future steps. Outperfom RNN in many
tasks.

— Capture long-term dependencies in the data
(same reason). Can be combine with LSTM.

— Better handling of complex data. ‘—“T”‘*m'—m**m—
Bi-RNNs can capture complex patterns v a Y -
in the input data.

Bi-RNN : Drawbacks

- Increased computational complexity.

- more computational resources.
- more difficult to implement.
- less efficient regarding runtime performance.

- requires more memory to store the weights.

— Harder to optimize.

More parameters implies more difficulties to optimize.
Slower convergence and gradients can interfere.

— Need for longer input sequences to capture long-term
dependencies.

Next time : practical session

Implementation of a Recurrent Neural
Network.

1 Apprentissage
telecom

se;llndt. etienne AUtO m atl q LI e

ngén
IIthIg

=) LABORATOIRE

g Neural Networks for seqguences
(Part 2)

Thibaud Leteno (thibaud.leteno@univ-st-etienne.fr)

Based on the course Ava Amini.

Avril 2025

mailto:thibaud.leteno@univ-st-etienne.fr

Introduction to RNN

- Seq25Seq architecture
- Attention mechanism

- Transformers

Seq2Seq architecture

Limitations of RNN for many-to-many

Many-to-many

ENGLISH SPANISH FRENCH v

Le canapé est vert

ONONOXO O
QOO - O By

Limitations of RNN for many-to-many

cases

Many-to-many

Translation English-Chinese.

Q Q O Q O “What are you doing today?”

OO0~ =0 SRFEBHE?”

() QO O (From 5 words to 7 symbols.

Definitions and applications

- Seqg25Seq (Sutskever et al., 2014) aims at mapping a
sequence of size N to a sequence of size M.

- Applications :

- Translation

- Speech recognition

- Video captioning

- Text generation (Chatbot)

Seq2Seq architecture

Decoder

3 components : Encoder, Encoder Vector, Decoder.

Seq2Seq architecture

— Encoder (stack of recurrent units (RNN, LSTM or GRU))

- he = fo(Whn™ * her + Wen™ * Xt)

Seq2Seq architecture

— Encoder (stack of recurrent units (RNN, LSTM or GRU))
- he = fa(wnn" * hea + Wxn" * X¢)

— Encoder Vector

- final hidden state produced from the encoder part, contains the information
from the input elements.

- initial state of the decoder.

Seq2Seq architecture

— Encoder (stack of recurrent units (RNN, LSTM or GRU))
- he = fa(wnn" * hea + Wxn" * X¢)

— Encoder Vector

- final hidden state produced from the encoder part, contains the information
from the input elements.

- initial state of the decoder.

— Decoder (stack of recurrent units (RNN, LSTM or GRU))

- each unit takes a hidden state from the previous unit and produces an
output and its own hidden state..

-h'c = f'n(wn" * h'e.1) and S\/t = fy(wy * hy)

Seq2Seq architecture

Decoder

3 components : Encoder, Encoder Vector, Decoder.

Seqg2Seq back-propagation

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

T
1
=Rk ,I,,,
h % B % % % P
A A A

A A A

0000
00
0000 .
0000
0000
0000
0000

Encoder RNN

{ i

il a m’ entarté <START> he hit me with a pie
% P -)

W 5 4
Source sentence (from corpus) Target sentence (from corpus)

H_}

NNY J2po2aq

Attention mechanism

Limitations of recurrent architecture

— Encoding bottleneck
— Seguences are passed step-by-step
— Hard to keep information through the pipeline
— Loss of information in practice

- Slow (step-by-step), no parallelization

- Not (so) long memory

Reminder : data through the pipeline

Sequence of
output

l | |

Sequence of , , ,

features X'1 — X2 | m=p oo omp | Xn Feature vector
Sequence of X % y
inputs "

. P>

Problem reformulation

RNN use recurrence to model sequence dependencies
(with limitations).

We want :
- continuous stream
- parallelization
- long memory

Problem reformulation

RNN use recurrence to model sequence dependencies
(with limitations).

We want :
- continuous stream
- parallelization
- long memory

Problems come from the step-by-step processing.
Can we eliminate the need for recurrence ?

Problem reformulation

RNN use recurrence to model sequence dependencies
(with limitations).

We want :
- continuous stream
- parallelization
- long memory

Problems come from the step-by-step processing.
Can we eliminate the need for recurrence ?

ldea : Identify and focus on what is important !

Attention Is All You Need
(Vaswani et al., 2017; Bahdanau et al., 2014)

Intuition behind self-attention

Example : Identify
the brands of the
cars present on the
Image.

Intuition behind self-attention

Example : Identify
the brands of the
cars present on the
Image.

1) Identify object to
focus on.

2) Extract the
features with high
attention.

Intuition behind self-attention
Most challenging part... Similar to a search on Internet.

* YouTube

GIANT SEA TURTLES - AMAZING CORAL REEF FISH 12
HOURS of THE BEST RELAX MUSIC

Ll

12:00 44
MIT 6.5191 (2020): Introduction to Deep Learning
:E' *
.1 \ <mszsal

The Kobe Bryamt Fadeaway Shot

i‘&% j ‘ .

Intuition behind self-attention

Most challenging part... Similar to a search on Internet.

» YouTube

GIANT SEA TURTLES - AMAZING CORAL REEF FISH =12
HOURS of THE BEST RELAX MUSIC

L)

MIT 6.5191 (2020): Introduction to Deep Learning

‘#

The Kobe Bryant Fadeaway Shot

Intuition behind self-attention

YouTub — For every videos, key
. . iInformation related (e.q.

GIANT SEA TURTLES * AMAZING CORAL REEF FISH + 12 t|t|e)
HOURS of THE BEST RELAX MUSIC

UL

MIT 6.8191 (2020): Introduction to Deep Learning

The Kobe Bryant Fadeaway Shot

Intuition behind self-attention

Youlub — For every videos, key
. . information related (e.qg.

GIANT SEA TURTLES * AMAZING CORAL REEF FISH + 12 t|t|e)
HOURS of THE BEST RELAX MUSIC

s - We want to find the
correspondence between
the search (Query) and
the title (Keys).

MIT 6.8191 (2020): Introduction to Deep Learning

The Kobe Bryant Fadeaway Shot

oL ' 728 , "
R . k"m; s ﬁ
Le :nl x“"' % ,*'} £
‘-‘?&&- AL

i | N A 1648

Intuition behind self-attention

— For every videos, key
iInformation related (e.q.

GIANT SEA TURTLES * AMAZING CORAL REEF FISH + 12 t|t|e)
HOURS of THE BEST RELAX MUSIC

s - We want to find the
correspondence between
the search (Query) and
the title (Keys).

. ?ﬂlﬂuhg deep learning

MIT 6.8191 (2020): Introduction to Deep Learning

- Compute metric of
‘ similarity between Key
The Kobe Bryant Fadeaway Shot and Query_
How similar is each Key to
the Query ?

Intuition behind self-attention

* Youlube

— Last step extract the
relevant information.

MIT 6.5191 (2020): Introduction to Deep Learning

— Extract Values (videos).

Basis of self-attention

- |dentify and attend the most important feature in the input.
« \We consider a sequence X.
« Data is feed all at once.
« We still need information on the order.

- Learning self-attention with Neural Networks.
1) Encode positional encoding to capture the order of the sequence.
2) Extract Query, Key, Value.
3) Compute the attention weighting.

4) Extract features with high attention.

1) Positional Encoding

Data is feed all at once.
Need information on the order.

Positional Encoding gives information
on the order of the words directly in
the embedding.

Iv\PuE

—
sequence

Word

—>

embedding

Positional
Encoding —>
Makrix

Output of

Fosif;ionat

encoding
L&ver

am a Robot
Vo = V] = Ve = Vi =
embedding embedding embedding embedding
vector(l) vector(am) vector(a) vector(Robot)

Po = Posikional
vector(I)

P1 = Positional
vector(am)

P2 = Positional
vector(a)

P2 = Posikional
vector(Robot)

Yo = Posiktional
encoding(I)

Yy = Positional
encodinglam)

Y2 = Positional
encoding(a)

ys = Positional
encoding(Robo
9

2) Extract Key, Query, Values

Using Neural Network layers,
we compute the Key, Query
and Value matrices.

X wa
EEE
o = i i
L1 1]
X WK
X
X WV
Embedding Linear

Layer

3) Compute the attention weighting

— Attention scores : compute the pairwise similarity between each Key
and Query.

> Q.K'" (scaled dot product)
scaling

- Equivalent to the cosine similarity.

- In other words, Q and K being vectors, are they going in the same
direction?

4) Extract features with highest

- Attention matrix gives indications on where to .

find the related information (how components
are related to each others).

— Features with highest attention :

QK™
Vi,

Attention(Q, K, V') = softmax(\%

later
- went

- to

+Malaysia

- for

-one

_year

.—repurt

.-

later -

went -

to -
report -
Malaysia -
for -

one -

year -

Attention mechanism sum-up

Objective: Identify and attend to the most important features in the input.

Input data - Positional Encoding
- Embedding
- Key, Query, Values
- Compute self-attention scores.

— Extract representations of the data where we focus on
important information.

Attention based architecture

So fa I, Single self-attention head, Scaled Dot-Product Attention Multi-Head Attention
multiple ones can be layered 1
. 4 Linear
together to build larger NN. MatMul T
i ¥ Concat
SoftMax Yy
* -] 1
Each head extracts different B S (D
Information to get a rich i JE 1 LI | LI 1 I
representation of the data ! Vit T Ee’jar K
(grammar, semantic, meaning...) yord

Attention based architecture

So fa I, Single self-attention head, Scaled Dot-Product Attention Multi-Head Attention
multiple ones can be layered 1
) 4 Linear
together to build larger NN. Matvu
i ¥ Concat
SoftMax :
-
Each head extracts different e — e e de 1
iInformation to get a rich Scale [J AN | L]
- 1 p-= =y r== Sy res
representation of the data ! Y Linear uﬂe;|ar H Cnear PV
(grammar, semantic, meaning...) yord

V K Q

Transformers !

Transformers

State-of-the-art (for now...)

ransformer architecture

Output probabilities

T
| Decoder
Encoder
T T
Inputs Ouputs

(Shifted right)

ransformer architecture

Output probabilities

T
Decoder
Encoder
T T
Inputs Ouputs

(Shifted right)

/—) Add & norm

Feed forward

N

/—) Add & norm

Multi-head
attention

7

G

|

Input embedding

T

Inputs

Output probabilities
T

Softmax

T

Linear

T

Add & norm
|

Feed forward

Add & norm =

Multi-head
attention

—

Add & norm h

Masked multi-
head attention

I

+—O

|

Output embedding

T

Outputs
(shifted right)

ransformer-based models (for NLP)

- Encoder only

- input oriented tasks
- text classification
- entity recognition

— Decoder only

- generative tasks
- text generation

— Encoder-Decoder

- generative tasks requiring
knowledge on the input

- translation

- summarization

Evolutionary

[T 5G BardG [GPT-4& M [Jurassic-2Ja2t (CLaude) A
Tree LLavAlV
L
Anthropic
OPT-IML[0N e |
"y [ChatGPT)® BLOOMZ| % GalacticalgN|GLM[¥: i =
T5 (€]
Sparron &
BLOCM
&)l Do G
OPT
Closed-Source
- @e FaiG
Chinchillal®
InstructG GPT-NeoX[@]
ST-MoE|G LaMDAIG
\J = [GLa: (Gopher) O [ERNIES.9%5([| Cohera®
Jurassic-1}A2
GPT-J[e}
GPT-Neo[@)
Switch
2 e
XLNet[c3 | open source 11|
closed source g
GPT-2[G)] 50
3 |
___ (e}
GPT-1
® E o&

5 2%
/2 I 00
GloVe 7 & 1G

FastText

Word2Vec

Pre-trained models

Life-cycle of LLMs

- Pre-training
— |learn global ‘understanding
of the language

’

- Tuning
— further training to fit a task

- Deployment

o Fine-Tunin
4>[Pre-Training B . (SFT or RLH%) I

A A

T g Dat Pre-Trained Model In-Dom Fine-Tuned Model

(Large) Language Mode! (Large) Language Model

E‘ /'\, #‘ El" ;
- [E— - — g [—
D = Q) || \ s
— s — em— = —

Bundwoid

\

In-Context
Learning

-«

Example of Transformers in NLP,

the Large Language Models

- Pre-training

- Masked Language Modeling (MLM)

Some tokens are randomly masked and the model must predict them.
Helps to learn representations (e.g. Encoder-based models).

- Causal Language Modeling (CLM) or Next Word Prediction

Predicts the next word in a sequence given the previous words.
Good for generative models.

- Contrastive Learning

Distinguish between similar and dissimilar sentences.
Helps to learn representations.

Example of Transformers in NLP,

the Large Language Models

- Tuning

- Full fine-tuning (best performance)
All the models’ parameters are updated for a task (e.g. classification).

- Parameter-Efficient fine-tuning (most efficient)

- Adapters (small sub-network are trained and added to the model).
- Low-Rank Adapters (weights matrices are trained and added to the
model).

- Prefix-tuning (special prefix embeddings are learned and added to the
embeddings, no weights changes). -
- Prompt-tuning (learnable prompts are add to inputs, no weights changes).

Example of Transformers in NLP,

the Large Language Models

- Tuning

- Reinforcement Learning (best alignment with human preferences)
Use of human feedback to improve the model.

- Proximal Policy Optimization (use a reward model to score the output
of the model and upgrade its weights).

- Direct Policy Optimization (use pairs of sentences (accepted-rejected)
and train the model to prefer the ‘accepted sentence’).

Large language models

NLP’s Moore’s Law: Every year model size increases by 10x
1500 iy y LANGUAGE MODEL SIZES TO MAR/2023
Google 0s-1 158
= Switch Transformerp ~ ° » : . /
21440 167 Luminchs < GLM-130B
E ChatGLM-6B
E @ ,,'f:to"f,' OPT-175B
E 1 080 O en AI aMln-ervaer BB3 GPT-4
g NLP model size and computation are increasing exponentially GpPT 3 - s el | s Undisclosed
o) - U-PaLM
€ 720 2% Microsoft 1}05 ‘ 2 ::EESE;'\;
g T-NLG . ; Framee LaMDA : . h :
UJ 1 7B Al lab/group LaMDA 2 ~
2 360 © i ZNVIDIA . o Chinchilla) Flamingo
3 Google OpenAI Google OpenAl paqatron| M- T 6 oy 708) 08 ode++ 7ioM
= Transformer GPT BERT ePl2 2 838 208 _
0.05B 0.11B 0.34B _....t:8B""" ' b oo @

2017 2018 2019 2020 2021

Models are larger and larger - New challenges...

- deployment on small devices
- data privacy
- Intellectual property of the training data

ransformers, other applications

MLP
Head

— Biological sequences (e.g. AlphaFold2

(Jumper et al., 2021))

- Images (e.g. Vision Transformer (ViT)
(Dosovitskiy et al. 2020))

— Audio (e.g. Whisper (Radford et al., 2022)

for Speech-to-text)
- Time series

Encoder Input

Class
Amanita Cae.
Amanita Mus.

Boletus Cal.

Embedding
* Extra learnable

[elass] embedding

To Predict

M

Seasonal Init

|
n |l
Y
|

Trend-cyclical Init

|
|

Patch + Position >

/\Jlmput Data Mean

Autoformer Encoder N x STi"_“JE
eries
Seasonal __ LY g Y A T LY
[~ Auto- Series |~ Feed Series Part T~ Zero
L Correlation Decomp Forward Decomp Trend]
-cyclical 7L\L\/v[— —|_Data
Part Mean
‘™ Auto- Series | [» Auto- Series Feed Series
L Correlation Decomp |*Correlation Decomp Forward Decomp 1)
' M 2
2
5
Autoformer Decoder M x

Transformer Encoder

EH-H

Linear Projactlon of Flattened Patches

Encoder Block

Encoder Block

Encoder Block

Encoder Block

o

/ 2x ConviD + GELU \

T

Log-mel spectrogram

Sinusoidal
Positional Encoding

Cross attention

Transformer Encoder

" Multi-Head
Attention

e
Norm
—

Embedded
Patches

Mext-token prediction

Decoder Block

Decoder Block

Decoder Block

Decoder Black

f
Positios IELG‘:»:EZl @ f j

Tokens in multitask training format

Next : Practical Session

Implementation of a Seq2Seq model.

