
Apprentissage
Automatique

Recurrent Neural Networks

Mars 2025

Thibaud Leteno (thibaud.leteno@univ-st-etienne.fr)

Based on the course of Barbara Martin et Ava Amini

Introduction to RNN

- Idea behind RNN

- The core of RNN

- The Vanish Gradient Problem

- Long-short term memory

- Bi-directional RNN

Introduction to RNN

Artificial Neural
Networks

Classification
and Regression

Convolutional
Neural
Networks

Computer
Vision

Recurrent
Neural
Networks

Time series and
NLP

Notion of sequence
Next position of the ball ?

Notion of sequence
Next position of the ball ?

No prior information. Could be any position.

Notion of sequence
Next position of the ball ?

Notion of sequence
Next position of the ball ?

With prior information, we can guess what position
is most likely to be next. Our prediction is guided.

Notion of sequence
A sequence can be :

- Audio
- Text (sequence of characters or words)
- Medical Signal (ECG)
- Financial markets
- Biological sequences encoded in DNA
- Patterns in the climate

What questions when dealing
with sequences ?

So far with FFN, One-to-one configuration (classification, regression)
Some notations :

x, the input.
y, the associated true label.
ŷ, the predicted label.

x

FFN

ŷ

What questions when dealing
with sequences ?

Many-to-one

Example : Sentiment analysis

…

What questions when dealing
with sequences ?

One-to-many

…

Example : Image captioning

What questions when dealing
with sequences ?

Many-to-many

Example : Translations, Chatbot

…

What solutions ?

What Neural Networks can we build to tackle
this type of problems ?

The perceptron, reminder

The perceptron, reminder

No notions of sequence or temporal processing...

Handling individual time steps

x1

ŷ1

Let consider a sequence X = {x1, x2, …, xn}

x2

ŷ2

xn

ŷn

…

Let consider a sequence X = {x1, x2, …, xn}

Handling individual time steps

x1

ŷ1

Let consider a sequence X = {x1, x2, …, xn}

x2

ŷ2

xn

ŷn

…

Let consider a sequence X = {x1, x2, …, xn}

We have

ŷt = f(xt)
with f learned and defined by the
weights of the neural network.

Recurrent Neural Networks

x1

ŷ1

xt have dependencies not taken into considerations.

x2

ŷ2

xn

ŷn

…

ŷn could depends of
previous inputs

x1

ŷ1

xt have dependencies not taken into considerations.

x2

ŷ2

xn

ŷn

…

ŷn could depends of
previous inputs

How can we define a
relation that links network
computation of the
different steps ?

Recurrent Neural Networks

x1

ŷ1

We want to pass the information from the previous computations to
the next step.

x2

ŷ2

xn

ŷn

…

Recurrent Neural Networks

x1

ŷ1

We want to pass the information from the previous computations to
the next step.

x2

ŷ2

xn

ŷn

…

We define this as the internal
states or memory term :

Variable ht

h1 h2 ht-1

Recurrent Neural Networks

x1

ŷ1

We want to pass the information from the previous computations to
the next step.

x2

ŷ2

xn

ŷn

…h1 h2 ht-1

Recurrent Neural Networks

The output becomes

ŷt = f(xt, ht-1)
and depends on the input and
the past information.

Recurrence relation captures how we update internal
state h of t.

ht = fw(xt, ht-1) f != fw

 Same function fw and weights w at every steps.

Intermediate sum up : the recurrence
relation

xt

ŷt

ht

RNN seen as a loop.

How do we compute ht ?

ht = tanh(whhT * ht-1 + wxhT * xt)

Warning : several weights matrix are used !

Intermediate sum up : the recurrence
relation

xt

ŷt

ht

RNN seen as a loop.

Intuition (pseudo-code)

rnn = RNN()
hidden_states = [0, 0, 0, 0]
sentence = [“I”, “love”, “recurrent”, “neural”]

for word in sentence:
prediction, hidden_states = rnn(word, hidden_states)

next_word = prediction
next_word = “networks”

Intermediate sum up : the recurrence
relation

xt

ŷt

ht

RNN seen as a loop.

Criteria to get a robust and reliable
network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths

- Learn long-term dependencies

- Maintain information in order

- Share parameters across the sequence

Do we fulfill everything ?

Length of sequences and Language

Neural Networks understand numbers not words.

We need the sequences to be of fixed size.

How to represents the sentence numerically ?

Length of sequences and Language

Neural Networks understand numbers not words.

We need the sequences to be of fixed size.

How to represents the sentence numerically ?

Word Embeddings

Words embeddings
Embedding = mapping into a vector of numbers of fixed size.

school

college

university

teacher

student

campus

degree
learning

diploma

1. Vocabulary

Words embeddings
Embedding = mapping into a vector of numbers of fixed size.

school

college

university

teacher

student

campus

degree
learning

diploma

1. Vocabulary

college → 0
campus → 1
teacher → 2
learning → 3

…

diploma → n

2. Indexing
(words to index)

Words embeddings
Embedding = mapping into a vector of numbers of fixed size.

school

college

university

teacher

student

campus

degree
learning

diploma

1. Vocabulary

college → 0
campus → 1
teacher → 2
learning → 3

…

diploma → n

2. Indexing
(words to index)

3. Embedding

Words embeddings
One-hot encoding Learned embedding

college = [1, 0, 0, 0, …, 0]
campus = [0, 1, 0, 0, …, 0]
teacher = [0, 0, 1, 0, …, 0]
learning = [0, 0, 0, 1, …, 0]

…

diploma = [0, 0, 0, 0, …, 1]

Vectors is the size of
the vocabulary.

No notion of meaning.

Captures some meaning from the data.

Words embeddings
Padding

Sentence_1 = [‘I’, ‘love’, ‘neural’, ‘networks’]
Sentence_2 = [‘I’, ‘use’, ‘recurrent’, ‘neural’, ‘networks’, ‘everyday’]

Embedding_1 = [0.2, 0.5, 0.35, 0.4]
Embedding_2 = [0.2, 0.9, 0.65, 0.35, 0.4, 0.8]

Embedding_1 and Embedding_2 have different size…

With padding:

Embedding_1 = [0.2, 0.5, 0.35, 0.4, 0.0, 0.0]
Embedding_2 = [0.2, 0.9, 0.65, 0.35, 0.4, 0.8]

Padding can be done to fixed size (with truncation) or max size.

Criteria to get a robust and reliable
network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths

- Learn long-term dependencies

- Maintain information in order

- Share parameters across the sequence

We have seen how to process a sequence,
but how do we train the network ?

How do we compute the loss when
we have N predictions ?

x1

ŷ1

Compute a loss at every steps.

ŷt = yt ?

Total loss for a given sequence :

L = l1 + l2 + … + ln

x2

ŷ2

xn

ŷn

…h1 h2 ht-1

Loss computation with RNN
l1 l2 ln

Backpropagation (Feed Forward Networks)

Backpropagation Through Time (RNN)

Backpropagation Through Time (RNN)

RNN have individuals losses across steps :

→ When back-propagating we have to propagate the loss through
each individuals steps
= Back-propagation Through Time

→ We take the predictions and back-propagate back through the
network to define and update the loss with regards to each
parameters in the network and adjust it.

RNN have individuals losses across steps :

→ When backpropagating we have to propagate the loss through
each individuals steps = Backpropagation Through Time

→ We take the predictions and backpropagate back through the
network to define and update the loss with regards to each
parameters in the network and adjust it.

Example at step 2 :

Backpropagation Through Time (RNN)

Compute the gradient
(chain rule)

Update parameters

Many repeated computations and multiplication in order to compute the
gradients wrt. to the first step → issues with the gradient.

Problem : RNN’s backpropagation is tricky !

Many repeated computations and multiplication in order to compute the
gradients wrt. to the first step → issues with the gradient.

If the values of the gradient get :

- Too large → Exploding gradient problem
→ Impossible to train the network

- Too small → Vanishing gradient problem
→ Can’t update the parameters and train the model
properly

Problem : RNN’s backpropagation is tricky !

→ Exploding gradient problem

Simple solution : weights clipping (scale the weights at reasonable values)

→ Vanishing gradient problem

Three tools to mitigate the problems :

- Activation function
- Weights initialization
- Network architecture

Problem : RNN’s backpropagation is tricky !

Multiplying many small number with small number → Gradient get smaller
and smaller.

→ In case of short sequences, not a problem.

→ In case of long sequences, we need information from further back in the
sequence to do the prediction. The problem then appears because of the
multiplicity of operations to do.

Why is the vanishing gradient a problem ?

Vanishing gradient problem and solutions

1) Activation function : switch from Tanh to ReLU.
→ prevents the derivative to shrink
the gradients when x > 0.

2) Weights initialization :
At initialization :
- weights are set to the identity matrix.
- bias are set to 0.

→ prevents the weights from shrinking to 0

Vanishing gradient problem and solutions

3) Adjust the architecture (most efficient)

→ Objective : controlling the flow of information in the network
to filter out what is not important.

→ Add gated cells to selectively add or remove information within
each recurrent unit.

→ Techniques : LSTM, GRU, etc.

We will focus on LSTM.

Long-Short Term Memory
Key concepts :

1) LSTM maintains a cell state ct (like RNN) but it is independent from
what is outputted.

2) Cell state is updated according to the gates that control the
information flow :

→ Forget gate get rids of irrelevant information.
→ Store relevant information from the current input.
→ Selectively update cell state
→ Output gate returns a filtered version of the cell state.

RNN reminder

LSTM, global view

LSTM maintain a cell state through steps

LSTM, forget gate

Retrieve internal state and get rid of irrelevant information.

Uses a sigmoid activation function

If close to 0, information is forgotten;
If close to 1, the information is retained.

LSTM, store relevant information from input

Input gate: retrieve internal state and extract relevant information.

sigmoid function determine if new
information is accepted (close to 1) or not
(close to 0)

tanh function creates a candidate value that
can be added to the cell state

LSTM, update cell state

Update with remove and added information.

Old information is updated based on the
importance of the new input

LSTM, output filtered version of the cell state

Transmit less information to allow long-term sequences.

sigmoid function decides what portion of
the cell state should be passed.

Compute the hidden state based on the cell
state with tanh function.

LSTM, global view

LSTM variations

Gers & Schmidhuber (2000), adding “peephole” connections (the gate layers (forget and
input) look at the cell state)

ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

LSTM variations

Variation : coupled forget and input gates

LSTM variations

Gated Recurrent Unit (GRU, Cho, et al. (2014)) :
→ combine the forget and input gates into a single “update gate”
→ merge the cell state and hidden state

http://arxiv.org/pdf/1406.1078v3.pdf

Criteria to get a robust and reliable
network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths

- Learn long-term dependencies

- Maintain information in order

- Share parameters across the sequence

(at least longer)

Bi-directional RNN

Limits of RNN

→ RNN processes sequences in a
single direction.
(left-to-right or right-to-left)

→ Only information from previous
steps can be used.

x1

ŷ1

x2

ŷ2

xn

ŷn

…h1 h2 ht-1

Limits of RNN

Example :

→ Apple is my favorite _____.

Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

→ Apple is my favourite _____, and I work there.

Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

→ Apple is my favourite company, and I work there.

Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

→ Apple is my favourite company, and I work there.

→ Apple is my favorite _____, and I am going to buy one.

Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

→ Apple is my favourite company, and I work there.

→ Apple is my favorite phone, and I am going to buy
one.

Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

→ Apple is my favourite company, and I work there.

→ Apple is my favorite phone, and I am going to buy
one.

We need later information to make a good prediction.

Bi-directional RNN or Bi-RNN
Objective :

→ Capture the information in the input data by
processing it in both directions.

→ Bi-RNN = RNN that processes data in forward and
backward directions.

Idea :

→ Combine the outputs of two RNNs.

Bi-directional RNN or Bi-RNN
Idea :

→ Combine the outputs of two RNNs :

- Forward RNN processes the data from left to right.

- Backward RNN processes the data from right to left.

Bi-directional RNN or Bi-RNN
→ Combine the outputs of two RNNs :

How to combine outputs of the RNNs ?
→ Concatenation (default): outputs of the forward and backward RNNs are
concatenated together. Output tensor is twice the size of the input vector.

→ Sum: outputs of the forward and backward RNNs are added together
element-wise. Output tensor of the same size as the input.

→ Average: outputs of the forward and backward RNNs are averaged
element-wise. Output tensor of the same size as the input.

→ Maximum: maximum value of the forward and backward outputs is
taken at each step. Output tensor of the same size as the input.

How to back-propagate during
training ?

→ Back-propagation through time (BPTT) (as for RNN).
→ 2 separate BPTT (one for each network).
→ use the same output to compute the loss.

How to back-propagate during
training ?

→ Back-propagation through time (BPTT) (as for RNN).
→ 2 separate BPTT (one for each network).

→ In the end, training a bi-RNN boils down to training :
1) a RNN to predict the next word knowing the

previous words.
2) a second RNN to predict the previous word

knowing the next ones.

→ Bi-RNN consider information from previous and next
steps when making predictions.

Bi-RNN : Advantages
→ Better performance for sequential data processing since it
consider previous and future steps. Outperfom RNN in many
tasks.

→ Capture long-term dependencies in the data
(same reason). Can be combine with LSTM.

→ Better handling of complex data.
Bi-RNNs can capture complex patterns
in the input data.

Bi-RNN : Drawbacks
→ Increased computational complexity.

- more computational resources.
- more difficult to implement.
- less efficient regarding runtime performance.
- requires more memory to store the weights.

→ Harder to optimize.
More parameters implies more difficulties to optimize.
Slower convergence and gradients can interfere.

→ Need for longer input sequences to capture long-term
dependencies.

Next time : practical session

Implementation of a Recurrent Neural
Network.

Apprentissage
Automatique

Neural Networks for sequences
(Part 2)

Avril 2025

Thibaud Leteno (thibaud.leteno@univ-st-etienne.fr)

Based on the course Ava Amini.

mailto:thibaud.leteno@univ-st-etienne.fr

Introduction to RNN

- Seq2Seq architecture

- Attention mechanism

- Transformers

Seq2Seq architecture

Limitations of RNN for many-to-many
cases

…

Many-to-many

Limitations of RNN for many-to-many
cases

…

Many-to-many
Translation English-Chinese.

“What are you doing today?”
“ 今天你在做什麼 ？”
From 5 words to 7 symbols.

Definitions and applications

→ Seq2Seq (Sutskever et al., 2014) aims at mapping a
sequence of size N to a sequence of size M.

→ Applications :

- Translation
- Speech recognition
- Video captioning
- Text generation (Chatbot)

Seq2Seq architecture

3 components : Encoder, Encoder Vector, Decoder.

Seq2Seq architecture

→ Encoder (stack of recurrent units (RNN, LSTM or GRU))
- ht = fh(whhT * ht-1 + wxhT * xt)

Seq2Seq architecture

→ Encoder (stack of recurrent units (RNN, LSTM or GRU))
- ht = fh(whhT * ht-1 + wxhT * xt)

→ Encoder Vector

- final hidden state produced from the encoder part, contains the information
from the input elements.

- initial state of the decoder.

Seq2Seq architecture

→ Encoder (stack of recurrent units (RNN, LSTM or GRU))
- ht = fh(whhT * ht-1 + wxhT * xt)

→ Encoder Vector

- final hidden state produced from the encoder part, contains the information
from the input elements.

- initial state of the decoder.

→ Decoder (stack of recurrent units (RNN, LSTM or GRU))

- each unit takes a hidden state from the previous unit and produces an
output and its own hidden state..
- h’t = f’h(whhT * h’t-1) and ŷt = fy(wy * ht)

Seq2Seq architecture

3 components : Encoder, Encoder Vector, Decoder.

Seq2Seq back-propagation

Attention mechanism

Limitations of recurrent architecture

 → Encoding bottleneck

→ Sequences are passed step-by-step
→ Hard to keep information through the pipeline
→ Loss of information in practice

→ Slow (step-by-step), no parallelization

→ Not (so) long memory

Reminder : data through the pipeline

x1

ŷ1

x2

ŷ2

xn

ŷn

…x’1 x’2 x’n

Sequence of
output

Sequence of
features

Sequence of
output

Sequence of
inputs

Feature vector

t

Problem reformulation

RNN use recurrence to model sequence dependencies
(with limitations).

We want :
- continuous stream
- parallelization
- long memory

Problem reformulation

RNN use recurrence to model sequence dependencies
(with limitations).

We want :
- continuous stream
- parallelization
- long memory

Problems come from the step-by-step processing.
Can we eliminate the need for recurrence ?

Problem reformulation

RNN use recurrence to model sequence dependencies
(with limitations).

We want :
- continuous stream
- parallelization
- long memory

Problems come from the step-by-step processing.
Can we eliminate the need for recurrence ?

Idea : Identify and focus on what is important !

Attention Is All You Need
(Vaswani et al., 2017; Bahdanau et al., 2014)

Intuition behind self-attention

Example : Identify
the brands of the
cars present on the
image.

Intuition behind self-attention

Example : Identify
the brands of the
cars present on the
image.

1) Identify object to
focus on.

2) Extract the
features with high
attention.

Most challenging part… Similar to a search on Internet.
Intuition behind self-attention

Most challenging part… Similar to a search on Internet.
Intuition behind self-attention

→ For every videos, key
information related (e.g.
title)

Intuition behind self-attention

→ For every videos, key
information related (e.g.
title)

→ We want to find the
correspondence between
the search (Query) and
the title (Keys).

Intuition behind self-attention

→ For every videos, key
information related (e.g.
title)

→ We want to find the
correspondence between
the search (Query) and
the title (Keys).

→ Compute metric of
similarity between Key
and Query.

How similar is each Key to
the Query ?

Intuition behind self-attention

→ Last step extract the
relevant information.

→ Extract Values (videos).

Intuition behind self-attention

Basis of self-attention
→ Identify and attend the most important feature in the input.

● We consider a sequence x.
● Data is feed all at once.
● We still need information on the order.

→ Learning self-attention with Neural Networks.
1) Encode positional encoding to capture the order of the sequence.

2) Extract Query, Key, Value.

3) Compute the attention weighting.

4) Extract features with high attention.

1) Positional Encoding

Data is feed all at once.
Need information on the order.

Positional Encoding gives information
on the order of the words directly in
the embedding.

2) Extract Key, Query, Values

Embedding Linear
Layer

Using Neural Network layers,
we compute the Key, Query
and Value matrices.

3) Compute the attention weighting
→ Attention scores : compute the pairwise similarity between each Key
and Query.

→ _________ (scaled dot product)

→ Equivalent to the cosine similarity.
→ In other words, Q and K being vectors, are they going in the same
direction?

Q . KT

 scaling

4) Extract features with highest
attention

→ Attention matrix gives indications on where to
find the related information (how components
are related to each others).

→ Features with highest attention :

Attention mechanism sum-up

Objective: Identify and attend to the most important features in the input.

Input data → Positional Encoding
→ Embedding
→ Key, Query, Values
→ Compute self-attention scores.
→ Extract representations of the data where we focus on

important information.

Attention based architecture

So far, single self-attention head,
multiple ones can be layered
together to build larger NN.

Each head extracts different
information to get a rich
representation of the data !
(grammar, semantic, meaning...)

Attention based architecture

So far, single self-attention head,
multiple ones can be layered
together to build larger NN.

Each head extracts different
information to get a rich
representation of the data !

Transformers !

So far, single self-attention head,
multiple ones can be layered
together to build larger NN.

Each head extracts different
information to get a rich
representation of the data !
(grammar, semantic, meaning...)

Transformers

State-of-the-art (for now...)

Transformer architecture

Transformer architecture

Transformer-based models (for NLP)
→ Encoder only

- input oriented tasks
- text classification
- entity recognition

→ Decoder only
- generative tasks
- text generation

→ Encoder-Decoder
- generative tasks requiring
knowledge on the input
- translation
- summarization

Pre-trained models
Life-cycle of LLMs

- Pre-training
 → learn global ‘understanding’
of the language

- Tuning
 → further training to fit a task

- Deployment

Example of Transformers in NLP,
the Large Language Models
→ Pre-training

- Masked Language Modeling (MLM)
Some tokens are randomly masked and the model must predict them.

 Helps to learn representations (e.g. Encoder-based models).

- Causal Language Modeling (CLM) or Next Word Prediction
Predicts the next word in a sequence given the previous words.

 Good for generative models.

- Contrastive Learning
Distinguish between similar and dissimilar sentences.
Helps to learn representations.

Example of Transformers in NLP,
the Large Language Models
→ Tuning

- Full fine-tuning (best performance)
All the models’ parameters are updated for a task (e.g. classification).
- Parameter-Efficient fine-tuning (most efficient)

- Adapters (small sub-network are trained and added to the model).
- Low-Rank Adapters (weights matrices are trained and added to the

model).
- Prefix-tuning (special prefix embeddings are learned and added to the

embeddings, no weights changes). -
- Prompt-tuning (learnable prompts are add to inputs, no weights changes).

Example of Transformers in NLP,
the Large Language Models

→ Tuning
- Reinforcement Learning (best alignment with human preferences)
Use of human feedback to improve the model.

- Proximal Policy Optimization (use a reward model to score the output
of the model and upgrade its weights).

- Direct Policy Optimization (use pairs of sentences (accepted-rejected)
and train the model to prefer the ‘accepted sentence’).

Large language models

Models are larger and larger → New challenges…

- deployment on small devices
- data privacy
- intellectual property of the training data

Transformers, other applications
→ Biological sequences (e.g. AlphaFold2
(Jumper et al., 2021))
→ Images (e.g. Vision Transformer (ViT)
(Dosovitskiy et al. 2020))
→ Audio (e.g. Whisper (Radford et al., 2022)
for Speech-to-text)
→ Time series

Next : Practical Session

Implementation of a Seq2Seq model.

