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- The Vanish Gradient Problem

- Long-short term memory

- Bi-directional RNN
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Notion of sequence
Next position of the ball ? 



Notion of sequence
Next position of the ball ? 

No prior information. Could be any position.



Notion of sequence
Next position of the ball ? 



Notion of sequence
Next position of the ball ? 

With prior information, we can guess what position 
is most likely to be next. Our prediction is guided.



Notion of sequence
A sequence can be :

- Audio
- Text (sequence of characters or words)
- Medical Signal (ECG)
- Financial markets
- Biological sequences encoded in DNA
- Patterns in the climate



What questions when dealing 
with sequences ?

So far with FFN, One-to-one configuration (classification, regression) 
Some notations :  

x, the input.
y, the associated true label.
ŷ, the predicted label. 

x

FFN

ŷ



What questions when dealing 
with sequences ?

Many-to-one

Example : Sentiment analysis

…



What questions when dealing 
with sequences ?

One-to-many

…

Example : Image captioning



What questions when dealing 
with sequences ?

Many-to-many

Example : Translations, Chatbot

…



What solutions ? 

What Neural Networks can we build to tackle
this type of problems ?



The perceptron, reminder



The perceptron, reminder

No notions of sequence or temporal processing...



Handling individual time steps

x1

ŷ1

Let consider a sequence X = {x1, x2, …, xn}

x2

ŷ2

xn

ŷn
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Let consider a sequence X = {x1, x2, …, xn}



Handling individual time steps

x1

ŷ1

Let consider a sequence X = {x1, x2, …, xn}

x2

ŷ2

xn

ŷn

…

Let consider a sequence X = {x1, x2, …, xn}

We have

ŷt = f(xt)
with f learned and defined by the 
weights of the neural network.



Recurrent Neural Networks

x1
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xt have dependencies not taken into considerations.
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…

ŷn could depends of 
previous inputs



x1

ŷ1

xt have dependencies not taken into considerations.

x2

ŷ2

xn

ŷn

…

ŷn could depends of 
previous inputs

How can we define a 
relation that links network 
computation of the 
different steps ? 

Recurrent Neural Networks



x1

ŷ1

We want to pass the information from the previous computations to 
the next step.

x2

ŷ2

xn

ŷn

…

Recurrent Neural Networks



x1

ŷ1

We want to pass the information from the previous computations to 
the next step.

x2

ŷ2

xn

ŷn

…

We define this as the internal 
states or memory term :

Variable ht 

h1 h2 ht-1

Recurrent Neural Networks



x1

ŷ1

We want to pass the information from the previous computations to 
the next step.

x2

ŷ2

xn

ŷn

…h1 h2 ht-1

Recurrent Neural Networks

The output becomes

ŷt = f(xt, ht-1)
and depends on the input and 
the past information.



Recurrence relation captures how we update internal 
state h of t.

ht = fw(xt, ht-1)       f != fw    

 Same function fw and weights w at every steps.

Intermediate sum up : the recurrence 
relation

xt

ŷt

ht

RNN seen as a loop.



How do we compute ht ?

ht = tanh(whhT * ht-1 +  wxhT * xt)

Warning : several weights matrix are used !

Intermediate sum up : the recurrence 
relation

xt

ŷt

ht

RNN seen as a loop.



Intuition (pseudo-code)

rnn = RNN()
hidden_states = [0, 0, 0, 0]
sentence = [“I”, “love”, “recurrent”, “neural”]

for word in sentence:
prediction, hidden_states = rnn(word, hidden_states)

next_word = prediction
# next_word = “networks”

Intermediate sum up : the recurrence 
relation

xt

ŷt

ht

RNN seen as a loop.



Criteria to get a robust and reliable 
network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths

- Learn long-term dependencies

- Maintain information in order

- Share parameters across the sequence

Do we fulfill everything ?  



Length of sequences and Language

Neural Networks understand numbers not words.

We need the sequences to be of fixed size.

How to represents the sentence numerically ?



Length of sequences and Language

Neural Networks understand numbers not words.

We need the sequences to be of fixed size.

How to represents the sentence numerically ?

Word Embeddings  



Words embeddings
Embedding = mapping into a vector of numbers of fixed size.

school

college

university

teacher

student

campus

degree
learning

diploma

1. Vocabulary



Words embeddings
Embedding = mapping into a vector of numbers of fixed size.

school

college
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teacher
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learning
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1. Vocabulary

college → 0
campus → 1
teacher → 2
learning → 3

…

diploma → n

2. Indexing
(words to index)



Words embeddings
Embedding = mapping into a vector of numbers of fixed size.

school

college

university

teacher

student

campus

degree
learning

diploma

1. Vocabulary

college → 0
campus → 1
teacher → 2
learning → 3

…

diploma → n

2. Indexing
(words to index)

3. Embedding



Words embeddings
One-hot encoding Learned embedding

college = [1, 0, 0, 0, …, 0]
campus = [0, 1, 0, 0, …, 0]
teacher = [0, 0, 1, 0, …, 0]
learning = [0, 0, 0, 1, …, 0]

…

diploma = [0, 0, 0, 0, …, 1]

Vectors is the size of 
the vocabulary.

No notion of meaning.

Captures some meaning from the data.



Words embeddings
Padding

Sentence_1 = [‘I’, ‘love’, ‘neural’, ‘networks’]
Sentence_2 = [‘I’, ‘use’, ‘recurrent’, ‘neural’, ‘networks’, ‘everyday’]

Embedding_1 = [0.2, 0.5, 0.35, 0.4]
Embedding_2 = [0.2, 0.9, 0.65, 0.35, 0.4, 0.8]

Embedding_1 and Embedding_2 have different size…

With padding:

Embedding_1 = [0.2, 0.5, 0.35, 0.4, 0.0, 0.0]
Embedding_2 = [0.2, 0.9, 0.65, 0.35, 0.4, 0.8]

Padding can be done to fixed size (with truncation) or max size.



Criteria to get a robust and reliable 
network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths

- Learn long-term dependencies

- Maintain information in order

- Share parameters across the sequence



We have seen how to process a sequence,
but how do we train the network ? 

How do we compute the loss when 
we have N predictions ?



x1

ŷ1

Compute a loss at every steps.

ŷt = yt ?

Total loss for a given sequence :

L = l1 + l2 + … + ln

x2

ŷ2

xn

ŷn

…h1 h2 ht-1

Loss computation with RNN
l1 l2 ln



Backpropagation (Feed Forward Networks)



Backpropagation Through Time (RNN)



Backpropagation Through Time (RNN)

RNN have individuals losses across steps  :

→ When back-propagating we have to propagate the loss through 
each individuals steps 
= Back-propagation Through Time

→  We take the predictions and back-propagate back through the 
network to define and update the loss with regards to each 
parameters in the network and adjust it.



RNN have individuals losses across steps  :

→  When backpropagating we have to propagate the loss through 
each individuals steps = Backpropagation Through Time

→  We take the predictions and backpropagate back through the 
network to define and update the loss with regards to each 
parameters in the network and adjust it.

Example at step 2 : 

Backpropagation Through Time (RNN)

Compute the gradient 
(chain rule)

Update parameters



Many repeated computations and multiplication in order to compute the 
gradients wrt. to the first step → issues with the gradient.

  

Problem : RNN’s backpropagation is tricky !



Many repeated computations and multiplication in order to compute the 
gradients wrt. to the first step → issues with the gradient.

If the values of the gradient get :

- Too large → Exploding gradient problem
→ Impossible to train the network

- Too small → Vanishing gradient problem 
→ Can’t update the parameters and train the model 
properly  

Problem : RNN’s backpropagation is tricky !



→ Exploding gradient problem

Simple solution : weights clipping (scale the weights at reasonable values)

→ Vanishing gradient problem

Three tools to mitigate the problems :

- Activation function
- Weights initialization
- Network architecture 

Problem : RNN’s backpropagation is tricky !



Multiplying many small number with small number → Gradient get smaller 
and smaller.

→ In case of short sequences, not a problem. 

→ In case of long sequences, we need information from further back in the 
sequence to do the prediction. The problem then appears because of the 
multiplicity of operations to do. 

Why is the vanishing gradient a problem ?



Vanishing gradient problem and solutions

1) Activation function : switch from Tanh to ReLU.
→ prevents the derivative to shrink 
the gradients when x > 0.

2) Weights initialization :
At initialization :
- weights are set to the identity matrix.
- bias are set to 0.

→ prevents the weights from shrinking to 0



Vanishing gradient problem and solutions

3) Adjust the architecture (most efficient)

→ Objective : controlling the flow of information in the network
to filter out what is not important.

→ Add gated cells to selectively add or remove information within 
each recurrent unit. 

→ Techniques : LSTM, GRU, etc.

We will focus on LSTM. 



Long-Short Term Memory
Key concepts : 

1) LSTM maintains a cell state ct (like RNN) but it is independent from 
what is outputted.

2) Cell state is updated according to the gates that control the 
information flow : 

→ Forget gate get rids of irrelevant information.
→ Store relevant information from the current input.
→ Selectively update cell state
→ Output gate returns a filtered version of the cell state.

 



RNN reminder



LSTM, global view



LSTM maintain a cell state through steps



LSTM, forget gate

Retrieve internal state and get rid of irrelevant information.

Uses a sigmoid activation function

If close to 0, information is forgotten; 
If close to 1, the information is retained.



LSTM, store relevant information from input

Input gate: retrieve internal state and extract relevant information.

sigmoid function determine if new 
information is accepted (close to 1) or not 
(close to 0)

tanh function creates a candidate value that 
can be added to the cell state 



LSTM, update cell state

Update with remove and added information.

Old information is updated based on the 
importance of the new input



LSTM, output filtered version of the cell state

Transmit less information to allow long-term sequences.

sigmoid function decides what portion of 
the cell state should be passed.

Compute the hidden state based on the cell 
state with tanh function.



LSTM, global view



LSTM variations

Gers & Schmidhuber (2000), adding “peephole” connections (the gate layers (forget and 
input) look at the cell state)

ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf


LSTM variations

Variation : coupled forget and input gates



LSTM variations

Gated Recurrent Unit (GRU, Cho, et al. (2014)) : 
→ combine the forget and input gates into a single “update gate”
→  merge the cell state and hidden state

http://arxiv.org/pdf/1406.1078v3.pdf


Criteria to get a robust and reliable 
network (for sequences)

Characteristics to fulfill :

- Deal with sequences of different lengths

- Learn long-term dependencies

- Maintain information in order

- Share parameters across the sequence

(at least longer)



Bi-directional RNN



Limits of RNN

→ RNN processes sequences in a 
single direction.
(left-to-right or right-to-left)

→ Only information from previous 
steps can be used.

x1

ŷ1

x2

ŷ2

xn

ŷn

…h1 h2 ht-1



Limits of RNN

Example :

→ Apple is my favorite _____.
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→ Apple is my favorite fruit/company/phone.
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Example :
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Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

→ Apple is my favourite company, and I work there.

→ Apple is my favorite _____, and I am going to buy one.



Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

→ Apple is my favourite company, and I work there.

→ Apple is my favorite phone, and I am going to buy 
one.



Limits of RNN

Example :

→ Apple is my favorite fruit/company/phone.

→ Apple is my favourite company, and I work there.

→ Apple is my favorite phone, and I am going to buy 
one.

We need later information to make a good prediction.



Bi-directional RNN or Bi-RNN
Objective :

→  Capture the information in the input data by 
processing it in both directions.

→ Bi-RNN = RNN that processes data in forward and 
backward directions.

Idea :

→ Combine the outputs of two RNNs.



Bi-directional RNN or Bi-RNN
Idea :

→ Combine the outputs of two RNNs : 

- Forward RNN processes the data from left to right.

- Backward RNN processes the data from right to left.



Bi-directional RNN or Bi-RNN
→ Combine the outputs of two RNNs : 



How to combine outputs of the RNNs ? 
→ Concatenation (default): outputs of the forward and backward RNNs are 
concatenated together. Output tensor is twice the size of the input vector.

→ Sum: outputs of the forward and backward RNNs are added together 
element-wise. Output tensor of the same size as the input.

→ Average: outputs of the forward and backward RNNs are averaged 
element-wise. Output tensor of the same size as the input.

→ Maximum: maximum value of the forward and backward outputs is 
taken at each step. Output tensor of the same size as the input.



How to back-propagate during 
training ? 

→ Back-propagation through time (BPTT) (as for RNN).
→ 2 separate BPTT (one for each network).
→ use the same output to compute the loss.



How to back-propagate during 
training ? 

→ Back-propagation through time (BPTT) (as for RNN).
→ 2 separate BPTT (one for each network).

→ In the end, training a bi-RNN boils down to training :
1) a RNN to predict the next word knowing the 

previous words.
2) a second RNN to predict the previous word 

knowing the next ones.

→ Bi-RNN consider information from previous and next 
steps when making predictions.



Bi-RNN : Advantages 
→ Better performance for sequential data processing since it 
consider previous and future steps. Outperfom RNN in many 
tasks.

→ Capture long-term dependencies in the data 
(same reason). Can be combine with LSTM. 

→ Better handling of complex data. 
Bi-RNNs can capture complex patterns 
in the input data.

 



Bi-RNN : Drawbacks 
→ Increased computational complexity. 

- more computational resources. 
- more difficult to implement.
- less efficient regarding runtime performance. 
- requires more memory to store the weights. 

→ Harder to optimize.  
More parameters implies more difficulties to optimize.
Slower convergence and gradients can interfere.

→ Need for longer input sequences to capture long-term 
dependencies.  
 



Next time : practical session

Implementation of a Recurrent Neural 
Network.
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Introduction to RNN

- Seq2Seq architecture

- Attention mechanism

- Transformers



Seq2Seq architecture



Limitations of RNN for many-to-many 
cases 

 
 

…

Many-to-many



Limitations of RNN for many-to-many 
cases 

 
 

…

Many-to-many
Translation English-Chinese. 

“What are you doing today?” 
“ 今天你在做什麼 ？”
From 5 words to 7 symbols.



Definitions and applications 
 
 
→ Seq2Seq (Sutskever et al., 2014) aims at mapping a 
sequence of size N to a sequence of size M.

→ Applications : 

- Translation
- Speech recognition
- Video captioning
- Text generation (Chatbot)



Seq2Seq architecture 
 
 

3 components : Encoder, Encoder Vector, Decoder.



Seq2Seq architecture 
 
 

→ Encoder (stack of recurrent units (RNN, LSTM or GRU))
- ht = fh(whhT * ht-1 +  wxhT * xt)
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→ Encoder (stack of recurrent units (RNN, LSTM or GRU))
- ht = fh(whhT * ht-1 +  wxhT * xt)

→ Encoder Vector

- final hidden state produced from the encoder part, contains the information 
from the input elements.

- initial state of the decoder.



Seq2Seq architecture 
 
 

→ Encoder (stack of recurrent units (RNN, LSTM or GRU))
- ht = fh(whhT * ht-1 +  wxhT * xt)

→ Encoder Vector

- final hidden state produced from the encoder part, contains the information 
from the input elements.

- initial state of the decoder.

→ Decoder (stack of recurrent units (RNN, LSTM or GRU))

- each unit takes a hidden state from the previous unit and produces an 
output and its own hidden state..
- h’t = f’h(whhT * h’t-1)  and ŷt = fy(wy * ht)



Seq2Seq architecture 
 
 

3 components : Encoder, Encoder Vector, Decoder.



Seq2Seq back-propagation 
 
 



Attention mechanism



Limitations of recurrent architecture
 
 → Encoding bottleneck

→ Sequences are passed step-by-step
→ Hard to keep information through the pipeline
→ Loss of information in practice

→ Slow (step-by-step), no parallelization 

→ Not (so) long memory



Reminder : data through the pipeline
 
 

x1

ŷ1

x2

ŷ2

xn

ŷn

…x’1 x’2 x’n

Sequence of 
output

Sequence of 
features

Sequence of 
output

Sequence of 
inputs

Feature vector

t



Problem reformulation
 
 
RNN use recurrence to model sequence dependencies 
(with limitations).

We want :
- continuous stream
- parallelization
- long memory
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(with limitations).

We want :
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- parallelization
- long memory

Problems come from the step-by-step processing. 
Can we eliminate the need for recurrence ?



Problem reformulation
 
 
RNN use recurrence to model sequence dependencies 
(with limitations).

We want :
- continuous stream
- parallelization
- long memory

Problems come from the step-by-step processing. 
Can we eliminate the need for recurrence ?

Idea : Identify and focus on what is important ! 



Attention Is All You Need
(Vaswani et al., 2017; Bahdanau et al., 2014)



Intuition behind self-attention
 
 

Example : Identify 
the brands of the 
cars present on the 
image.



Intuition behind self-attention
 
 

Example : Identify 
the brands of the 
cars present on the 
image.

1) Identify object to 
focus on.

2) Extract the 
features with high 
attention.



 
 

Most challenging part… Similar to a search on Internet.
Intuition behind self-attention
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→ For every videos, key 
information related (e.g. 
title)
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→ For every videos, key 
information related (e.g. 
title)

→ We want to find the 
correspondence between 
the search (Query) and 
the title (Keys).

 

Intuition behind self-attention



 
 

→ For every videos, key 
information related (e.g. 
title)

→ We want to find the 
correspondence between 
the search (Query) and 
the title (Keys).

→ Compute metric of 
similarity between Key 
and Query.

How similar is each Key to 
the Query ?

Intuition behind self-attention



 
 

→ Last step extract the 
relevant information.

→ Extract Values (videos).

Intuition behind self-attention



 
 

Basis of self-attention
→ Identify and attend the most important feature in the input.

● We consider a sequence x.
● Data is feed all at once. 
● We still need information on the order.

→ Learning self-attention with Neural Networks.
1) Encode positional encoding to capture the order of the sequence.

2) Extract Query, Key, Value.

3) Compute the attention weighting.

4) Extract features with high attention.



 
 

1) Positional Encoding

Data is feed all at once. 
Need information on the order.

Positional Encoding gives information 
on the order of the words directly in 
the embedding.



 
 

2) Extract Key, Query, Values

Embedding Linear
Layer

Using Neural Network layers, 
we compute the Key, Query 
and Value matrices.



 
 

3) Compute the attention weighting
→ Attention scores : compute the pairwise similarity between each Key 
and Query.

→     _________  (scaled dot product)

→ Equivalent to the cosine similarity. 
→ In other words, Q and K being vectors, are they going in the same 
direction?    

Q . KT

  scaling 



 
 

4) Extract features with highest 
attention

→ Attention matrix gives indications on where to 
find the related information (how components 
are related to each others).

→ Features with highest attention : 



 
 

Attention mechanism sum-up

Objective: Identify and attend to the most important features in the input. 

Input data → Positional Encoding 
→ Embedding 
→ Key, Query, Values 
→ Compute self-attention scores.
→ Extract representations of the data where we focus on 

important information.



 
 

Attention based architecture

So far, single self-attention head, 
multiple ones can be layered  
together to build larger NN.

Each head extracts different 
information to get a rich 
representation of the data !        
(grammar, semantic, meaning...)



 
 

Attention based architecture

So far, single self-attention head, 
multiple ones can be layered  
together to build larger NN.

Each head extracts different 
information to get a rich 
representation of the data !

Transformers !

So far, single self-attention head, 
multiple ones can be layered  
together to build larger NN.

Each head extracts different 
information to get a rich 
representation of the data !        
(grammar, semantic, meaning...)



Transformers

State-of-the-art (for now...)



 
 

Transformer architecture



 
 

Transformer architecture



 
 

Transformer-based models (for NLP)
→ Encoder only

- input oriented tasks
- text classification
- entity recognition

→ Decoder only
- generative tasks
- text generation

→ Encoder-Decoder 
- generative tasks requiring 
knowledge on the input
- translation
- summarization



 
 

Pre-trained models
Life-cycle of LLMs

- Pre-training
  → learn global ‘understanding’ 
of the language

- Tuning  
  → further training to fit a task

- Deployment



Example of Transformers in NLP,
the Large Language Models 
→ Pre-training

- Masked Language Modeling (MLM)
Some tokens are randomly masked and the model must predict them.   

                  Helps to learn representations (e.g. Encoder-based models).

- Causal Language Modeling (CLM) or Next Word Prediction
Predicts the next word in a sequence given the previous words.             

        Good for generative models. 

- Contrastive Learning
Distinguish between similar and dissimilar sentences. 
Helps to learn representations.



Example of Transformers in NLP,
the Large Language Models 
→ Tuning

- Full fine-tuning (best performance)
All the models’ parameters are updated for a task (e.g. classification).
- Parameter-Efficient fine-tuning (most efficient)

- Adapters (small sub-network are trained and added to the model).
- Low-Rank Adapters (weights matrices are trained and added to the 

model).
- Prefix-tuning (special prefix embeddings are learned and added to the 

embeddings, no weights changes). - 
- Prompt-tuning (learnable prompts are add to inputs, no weights changes). 



Example of Transformers in NLP,
the Large Language Models 

→ Tuning
- Reinforcement Learning (best alignment with human preferences)
Use of human feedback to improve the model. 

- Proximal Policy Optimization (use a reward model to score the output 
of the model and upgrade its weights).

- Direct Policy Optimization (use pairs of sentences (accepted-rejected) 
and train the model to prefer the ‘accepted sentence’ ).



 
 

Large language models

Models are larger and larger → New challenges…

- deployment on small devices
- data privacy
- intellectual property of the training data



 
 

Transformers, other applications
→ Biological sequences (e.g. AlphaFold2 
(Jumper et al., 2021))
→ Images (e.g.  Vision Transformer (ViT) 
(Dosovitskiy et al. 2020))
→ Audio (e.g. Whisper (Radford et al., 2022) 
for Speech-to-text)
→ Time series



Next : Practical Session

Implementation of a Seq2Seq model.


